
MACHINE LEARNING IN R

Research Technologies

https://docs.hpc.arizona.edu

MACHINE
LEARNING
WITH R
Research Technologies

Chris Reidy

Knowledge Discovery Process

‣ The Knowledge Discovery process takes 7 steps
‣ Step 1: Understand your business goal and your data
‣ Step 2: Select your data
‣ Step 3: Prepare and process your data
‣ Step 4: Transform your data
‣ Step 5: Data mining
‣ Step 6: Analyze, interpret the data and patterns
‣ Step 7: Knowledge creation and presentation

Step 1
Understand
Data

Step 2
Select Data

Step 3
Prepare and
process Data

Step 4
Transform
Data

Step 5
Data Mining

Step 6
Analyze and
interpret
data

Step 7
Knowledge
creation and
presentation

Knowledge Discovery Process

‣ STEP 1: Understand your business goal and your data
‣ Depending on your specific goal, the model you choose will be different

‣ Exercise: For an electronics store, what type of factors lead to high return
rate?

Knowledge Discovery Process

‣ STEP 2: Select your data
‣ Figure out which data you need to solve your problem
‣ This is important since preprocessing is very time consuming, you want to focus

on that data that you will actually use
‣ There will be problems when you get to this step (guaranteed!)

‣ Incompatibilities in the databases or data files
‣ Data may be incomplete
‣ Data may be obscure

‣ Note: this step can also come later (again)

‣ Exercise: For the electronics store return rate problem, what data can we get
(existing), could we create (start collecting)?

Knowledge Discovery Process

‣ STEP 3: Prepare and process your data
‣ Very time consuming
‣ Data can come from legacy systems or external sources
‣ The data will need to be

‣ Cleaned, integrated
‣ Selected (again)

‣ There will be problems/issues
‣ Incomplete: missing values or aggregates only
‣ Noisy: missing, duplicated, erroneous or outliers
‣ Inconsistent: birthday is 1 Jan 1993, 010193, 01-01-1993
‣ Intentional: default values if not specified

Knowledge Discovery Process

‣ STEP 3: Prepare and process your data
‣ Nominal -> name

‣ For a person: name, SSN, age, education
‣ Some numbers can be used for calculation like age; and some cannot, like SSN
‣ Some values are ranked: Cancer stages 1,2,3,4

‣ Binary -> only two values
‣ Boolean: True or False, organic or inorganic
‣ Symmetric: if both values are equally important
‣ Asymmetric: if one is more important – use 1 for more important

‣ Numeric
‣ Scale with units of equal size
‣ Values can be +, -, or 0 (0 can be nothing or something like weight or temp)

‣ Ratio scale
‣ All characteristics of interval + true zero
‣ Able to compute mean, median, standard deviation etc

Knowledge Discovery Process

‣ STEP 4: Transform your data
‣ Different type of transformations exist

‣ Feature construction = applying mathematical formulas to existing
data features

‣ Feature subset selection = selecting which feature to use, which
database columns to use

‣ Aggregating data = sometimes, you will want to use only the average,
or sum, or maximum, or minimum, or other groupings (per store,
region, time unit)

‣ Bin the data = breaking up continuous ranging in discrete segments
(e.g. per month)

Knowledge Discovery Process
‣ STEP 5: Data mining
‣ Different models exist:

‣ Pattern identification and description = link analysis, market basket
analysis
‣ E.g. People who buy soda, usually buy chips
‣ E.g. People who visit website A, usually visit website B

‣ Classification, prediction = supervised learning
‣ E.g. if you work hard and you are smart -> you will get an A

‣ Database segmentation, clustering = unsupervised learning:
‣ E.g. documents covering the same topic (e.g., for similar documents, click here)

‣ For each model, you can choose a method to build your
model
‣ Classification: decision trees, neural networks
‣ Prediction: linear regression

‣ For each method, you need to choose the algorithm
‣ E.g. decision trees: ID3, C4.5, CART

Knowledge Discovery Process

‣ STEP 6: Analyze, interpret the data and patterns
‣ Once the model is build -> learn the implications
‣ Sometimes visualization can help

‣ e.g. clusters of documents, outliers

‣ STEP 7: Knowledge creation and presentation
‣ Use other resources to understand and interpret the end product
‣ Tie back to original goal

Classification of Algorithms - Based on
Technique

Characteristics Pro Con

Statistical Techniques
e.g. regression analysis

‣ usually involves numbers
‣ make strong assumptions about your
model, e.g. normal distribution

‣ elegant, theory based
‣ usually fast to train and test
‣ accurate
‣ tools available (SPSS, SAS, Minitab)
‣ results easy to understand

‣ you need to know what to apply
when
‣ need to be a good statistician
(not an exact art :-))

Symbolic Learning
e.g. decision trees (ID3)

‣ roots in AI
‣ decision trees, rules
‣ no assumptions made
‣ intuitive
‣ meaningful

‣ very intuitive, easy to understand
‣ fast

‣ not as accurate

Connectionist
= Neural Networks
FF/BP, SOM

‣ black box approach
‣ flexible
‣ powerful
‣ combination of specialty graphs (=the
data structure) + statistics

‣ general purpose, can be applied to
many problems
‣ can be super accurate (can also be
a problem)

‣ black box approach
‣ no intuitive results
‣ slow to train

Evolutionary
= Genetic Algorithms

‣ based on ‘survival of the fittest’
‣ stochastic process

‣ powerful for complex problems
‣ easy to implement
‣ relatively fast

‣ problem representation
(translation into GA) is hard to do

Heuristics/human
based

‣ learn from experience
‣ rules of thumb
‣ sometimes translated into expert systems

‣ human judgment, insight (will be
compatible)

‣ variation of performance
‣ memory limitations
‣ information overload problems

Classification of Algorithms - Based on Goal

‣ Descriptive Models
‣ Link Analysis

‣ Apriori algorithm
‣ Clustering models

‣ Hierarchical: Prim’s and
Kruskal’s

‣ Partitioning: K-Means
‣ Density-based: DBSCAN
‣ Grid-based: Self-Organizing

Map (SOM)

‣ Predictive Models
‣ Classification (predict class)

‣ Naïve Bayes
‣ Decision Trees: ID3, C4.5

‣ Ensemble Methods:
Random Forest

‣ Neural Networks: FF/BP
‣ Support Vector Machines

‣ Regression (predict number)

‣ Optimization Models
‣ Evolutionary programming

(parallel search)
‣ Genetic Algorithm (GA)

Neural Networks Relation to Biology

Cell Body

Nucleus

Dendrites: to facilitate
the connection with
other neurons

Axon: delivers output from
neuron to other neurons

Synapses: connection to the
next neuron (release of
neurotransmitter)

Figure: Structure of a typical neuron

Neural Networks

Hidden Nodes

Input Nodes

Output Nodes
w1AB

x1

x2

x3

xA

h1

h2

hB

o1

o2

oC

… …

w111
w211

w1ij
w2ij

… w2BCw2ij

o2

o1

h2

h1

hB oCoChB

o1

o2h2

oC

o2

o1

oC

o2

o1h1

oC

o2

o1

Backpropagation – the math
𝑂𝑢𝑡𝑝𝑢𝑡 𝑁𝑜𝑑𝑒 𝐸𝑟𝑟𝑜𝑟 = 𝛿2! = 𝑜! 1 − 𝑜! 𝑦! − 𝑜!

𝐻𝑖𝑑𝑑𝑒𝑛 𝑁𝑜𝑑𝑒 𝐸𝑟𝑟𝑜𝑟 = 𝛿1! = ℎ!(1 − ℎ!)7
"#$

%

𝛿2"×𝑤2!"

x1

x2

x3

xA

… …

…

Artificial Neural Networks

Hidden Nodes

Input Nodes

Output Nodes
w1AB

x1

x2

x3

xA

h1

h2

hB

o1

o2

oC
… …

w111
w211

w1ij
w2ij

…

w2BCw2ij

A single perceptron (or neuron)
can be imagined as a Logistic
Regression.
An Artificial Neural Network is
a group of multiple perceptrons
at each layer.
ANN can be used to solve
problems related to:
• Tabular data
• Image data
• Text data…

Recurrent Neural Networks

A looping constraint on the hidden layer of ANN turns it into RNN.
Parameter sharing results in fewer parameters to train and so reduces cost
RNN can be used for problems related to: Time series, Text or Audio data

Generative Adversarial Networks

A double network with a generator that tries to fool the discriminator.
Used to generate images but also used in large particle physics on the LHC to create results close
to the simulations without the very high compute cost.

Convolutional Neural Networks

A filter extracts part of the visual data and creates a 3D array or convolution which are
passed to the pooling layer which reduces unnecessary features.
For image recognition, first layer detects gradients, second lines, third shapes etc
CNN can be used for problems related to: Image processing, Computer vision, Speech recognition

Using RStudio on HPC

Using RStudio on HPC

Using RStudio on HPC

Using RStudio on HPC

Exercise: Data Pre-processing
In	this	exercise,	download	package	VIM	and	mice.	The	dataset	'sleep' is	included	in	
the	package	VIM.	It	comes	from	a	study	about	the	sleeping	pattern	of	62	mammals.	
It	wants	to	identify	the	relationships	between	sleep,	and	some	physical	
characteristics	of	mammals,	such	as	brain	and	body	weight,	life	span,	gestation	
time,	time	sleeping,	and	predation	and	danger	indices.

install package “VIM”
install.packages("VIM") # Hint: use multiple cores. It goes much faster
To use the package in an R session, we need to load it in an R session via
library()
library(VIM)
Load dataset “sleep”, which comes within the package “VIM”
data(sleep, package ="VIM")
call function head() to get a feeling about data, or call sleep to see all values
head(sleep)
download package “mice” and load it into R
install.packages("mice")
library(mice)

Exercise: Data Pre-processing
In R, we use “NA” stands for missing value; NaN(Not a Number) stands for an
impossible value; And symbol “Inf” and “-Inf” stands for infinity and negative infinity
respectively. In order to tell whether a value belongs to any case above, we use
function is.na(), is.nan(), and is.infinite(). The return value of each function is Boolean

First, we need to know how many rows in “sleep”
nrow(sleep)
[1] 62
We use complete.cases() or na.omit() to see tuples without missing value.
sleep[complete.cases(sleep),]
or try
na.omit(sleep)
Count the number of rows without missing value
nrow(sleep[complete.cases(sleep),])
[1] 42
To reverse the condition logic (rows containing one or more missing value), we
use the exclamation mark highlighted in Red
sleep[!complete.cases(sleep),]
nrow(sleep[!complete.cases(sleep),])
[1] 20

Exercise: Data Pre-processing
We tell R a Boolean value by inputting a TRUE or a FALSE. However, R can treat them as
integer 1 or 0 respectively, which means information about missing value can be
captured by using function sum() and mean().

Check how many observations contain missing value in column “Dream”
sum(is.na(sleep$Dream))
[1] 12
About 19% of obs (observations) in column Dream contain missing value
mean(is.na(sleep$Dream))
[1] 0.1935484
32% obs in data frame sleep containing one or more missing value
mean(!complete.cases(sleep))
[1] 0.3225806

Exercise: Data Pre-processing
Checking missing values is important, but little information about distribution and
pattern can be observed via functions we called above. It will be a convenient
alternative if we can see how the missing values distribute in datasets. To do so, we
can use the function md.pattern() to generate a matrix that shows the pattern of
missing value.

call function md.pattern(). Make sure you loaded package mice into R first
md.pattern(sleep)

Exercise: Visualization – aggr
Instead of seeing the sleep data in table via function md.pattern(), a visualization usually
makes more sense to users. The package VIM provides several functions that visualize the
pattern of missing values. Here we will apply aggr(), to our dataset.

call function aggr (), prop = FALSE convert percentage value into counts
aggr(sleep, prop = FALSE, numbers = TRUE)

Exercise: Visualization - marginplot
Function marginplot() returns a scatter chart, where we can observe the relationship
between two variables.

call function marginplot (), pch indicates notation of obs, col tells R how you
would like to see results in different color
marginplot(sleep[c("Gest", "Dream")], pch=c(20),

col = c("darkgray","red","blue"))

Exercise: Visualization - boxplot
Load dataset mtcars into R and show relationship between mpg and # of cylinders

boxplot(mpg ~ cyl, # mpg is the target variable
cyl is the explanatory variable
data = mtcars,
col = "grey",
main = "Mileage Data",
ylab = "MPG",
xlab = "Number of Cylinders") IQR – Inter Quartile Range

Whisker

Maximum

Outlier

Minimum

Exercise: Visualization – violin plot

A violin plot provides a comprehensive chart that combines information in box plot
and density distribution.

install.packages(“vioplot”)
library(vioplot)
v1 <- mtcars$mpg[mtcars$cyl == 4]
v2 <- mtcars$mpg[mtcars$cyl == 6]
v3 <- mtcars$mpg[mtcars$cyl == 8]
draw violin plots for vectors
vioplot(v1,v2,v3,

names=c(“4 cylinders”, “6 cylinders”, “8 cylinders”),
col=“gold”)

Exercise: Visualization – scatter plot
Using mtcars again we apply dot plot to check how each observation is distributed in a
given sample space.

plot(mpg ~ wt, data = mtcars)

Exercise: Visualization – violin plot
The outline of a violin chart indicates the density of distribution. The black bar at
center tells the IQR of distribution.

Exercise: Naive Bayes Classifier

Installing Packages
In the Mushroom dataset, there are 8123 observations belonging to 23 species of gilled
mushrooms in the Agaricus and Lepiota Family. There are two types of mushroom in terms of
edibility. If classes=e, the mushroom is edible, if classes=p, the mushroom is poisonous.
We want to tell which mushrooms are edible from those poisonous by looking at some of their
characteristics. Source: University of California Irvine

View working directory then set working directory

• e1071 – This is the dataset we are going to use.

install.packages(‘e1071’)
library(e1071)

getwd()
setwd(‘/xdisk/chrisreidy/workshops’)

Exercise: Naive Bayes Classifier

Preprocessing
Save Mushroom.csv under your working directory. The null value in mushroom dataset
is denoted by question mark.

read in csv file mushroom.csv. Note the question mark
represents null value
mushroom <- read.csv(“Mushroom.csv”, na.strings = “?”)
summary(mushroom)

check completion
nrow(mushroom[!complete.cases(mushroom),])
[1] 2480

Exercise: Naive Bayes Classifier

Preprocessing
Naive Bayes is an algorithm that depends on probability. To predict a conditional
probability, we have to figure out the prior probability of each predictive variables.
Therefore, a dataset with null value will raise risk for our prediction

we can retain observations that do not contain NA(null) value
mushroom = mushroom[complete.cases(mushroom),]

Exercise: Naive Bayes Classifier

Training and testing sets

Next, we will create train and test sets of the data. We will fit the model with the training
set, and use the test set to evaluate the model. We will do a 70/30 split (70% will be
training data).

70% of original data will be used for training
sample_size <- floor(0.7 * nrow(mushroom))
randomly select index of observations for training
training_index <- sample(nrow(mushroom), size = sample_size,
replace = FALSE)
train <- mushroom[training_index,]
test <- mushroom[-training_index,]

Exercise: Naive Bayes Classifier

Fitting and Model Performance

There is a Naive Bayes classifier in the e1071 package, loaded into our current session
already via function library(e1071). Fit the model to the training data.

note the period coming after tilde. It means all the other
variables in that dataset will be predictive variable
mushroom.model <- naiveBayes(classes ~ . , data = train)
We can explore the detail conditional probabilities for each
variables by calling the object mushroom.model itself.
mushroom.model

Exercise: Naive Bayes Classifier

Fitting and Model Performance

After fitting, run the test data through the model to get the predicted class for each
observation.

The result of prediction, a vector, will be attached to test
set labelled as “class”. The return of prediction is a vector
including predicted type of mushroom

mushroom.predict <- predict(mushroom.model, test, type = “class”)

Exercise: Naive Bayes Classifier

Fitting and Model Performance

Show the performance of the model.

pick actual value and predicted value together in a dataframe
called results
results <- data.frame(actual = test[,'classes'], predicted =
mushroom.predict)
We can get a popular matrix called confusion matrix
table(results)
columns indicate the number of mushrooms in actual type;
likewise, rows indicate the number those in predicted type.

predicted
actual edible poisonous

edible TN=1067 FP= 2
poisonous FN= 46 TP=580

Exercise: Neural Network
Installing Packages

For this example, we need to install package ISLR. The data we will use is a built-in
dataset of ISLR called College Data Set. It has several features of a college and a
categorical column indicating whether or not the School is Public or Private.

• ISLR – This is the dataset we are going to use.
• caTools – We will use the caTools package to randomly split the data into a training

set and test set.

• neuralnet – This package contains the function about neural network
neuralnetwork().

install.packages('ISLR')
install.packages('caTools')
install.packages('neuralnet')

Exercise: Neural Network
Loading Data

Install package ISLR, which is a dataset package and contains data we will use - College.

library(ISLR)
print(head(College, 2))

Private Apps Accept Enroll Top10perc
Abilene Christian University Yes 1660 1232 721 23
Adelphi University Yes 2186 1924 512 16

Top25perc F.Undergrad P.Undergrad Outstate
Abilene Christian University 52 2885 537 7440
Adelphi University 29 2683 1227 12280

Room.Board Books Personal PhD Terminal
Abilene Christian University 3300 450 2200 70 78
Adelphi University 6450 750 1500 29 30

S.F.Ratio perc.alumni Expend Grad.Rate

Exercise: Neural Network
Preprocessing

It is important to normalize data before training a neural network on it. The neural
network may have difficulty converging before the maximum number of iterations
allowed if the data is not normalized. There are a lot of different methods for
normalization of data.
Normally it is better to scale the data from 0 to 1, or -1 to 1. We can specify the center
and scale as additional arguments in the scale() function. For example:

Create Vector of Column Max and Min Values
maxs <- apply(College[,2:18], 2, max)
mins <- apply(College[,2:18], 2, min)

Use scale() and convert the resulting matrix to a data frame
scaled.data <- as.data.frame(scale(College[,2:18], center = mins,

scale = maxs - mins))

Check out results
print(head(scaled.data,2))

Apps Accept Enroll
Abilene Christian University 0.03288692646 0.04417701272 0.10791253736
Adelphi University 0.04384229271 0.07053088583 0.07503539405

Top10perc Top25perc F.Undergrad
Abilene Christian University 0.2315789474 0.4725274725 0.08716353479
Adelphi University 0.1578947368 0.2197802198 0.08075165058

P.Undergrad Outstate Room.Board
Abilene Christian University 0.02454774445 0.2634297521 0.2395964691
Adelphi University 0.05614838562 0.5134297521 0.7361286255

Books Personal PhD
Abilene Christian University 0.1577540107 0.2977099237 0.6526315789
Adelphi University 0.2914438503 0.1908396947 0.2210526316

Terminal S.F.Ratio perc.alumni
Abilene Christian University 0.71052631579 0.4182305630 0.1875
Adelphi University 0.07894736842 0.2600536193 0.2500

Exercise: Neural Network
Preprocessing - continued

Exercise: Neural Network
Train and Test Split

Let us now split our data into a training set and a test set. We will run our neural network
on the training set and then see how well it performed on the test set.
We will use the caTools package to randomly split the data into a training set and test set.

Convert Private column from Yes/No to 1/0
Private = as.numeric(College$Private)-1
data = cbind(Private, scaled.data)

library(caTools)
set.seed(101) # sets random numbers

Create Split (any column is fine)
split = sample.split(data$Private, SplitRatio = 0.70)

Split based off split Boolean Vector
train = subset(data, split == TRUE)
test = subset(data, split == FALSE)

Exercise: Neural Network
Neural Network Function

Before we actually call the function, we need to create a formula to insert into the
machine learning model. The neuralnetwork() function won't accept the typical decimal
R format for a formula involving all features (e.g. y ~ .). However, we can use a simple
script to create the expanded formula and save us some typing:

feats <- names(scaled.data)
Concatenate strings
f <- paste(feats,collapse=' + ')
f <- paste('Private ~', f)
Convert to formula
f <- as.formula(f)
f
Private ~ Apps + Accept + Enroll + Top10perc + Top25perc + F.Undergrad +
P.Undergrad + Outstate + Room.Board + Books + Personal +
PhD + Terminal + S.F.Ratio + perc.alumni + Expend + Grad.Rate

library(neuralnet)
nn <- neuralnet(f, train, hidden = c(10,10,10), linear.output = FALSE)

Exercise: Neural Network
Predictions and Evaluations

Now let's see how well we performed! We use the compute() function with the test data
(just the features) to create predicted values. This returns a list from which we can call
net.result

Compute Predictions off Test Set
predicted.nn.values <- compute(nn, test[2:18])

Check out net.result
print(head(predicted.nn.values$net.result))

[,1]
Adrian College 1
Alfred University 1
Allegheny College 1
Allentown Coll. of St. Francis de Sales 1
Alma College 1
Amherst College 1

Exercise: Neural Network
Predictions and Evaluations

Notice we still have results between 0 and 1 that are more like probabilities of belonging
to each class. We'll use sapply() to round these off to either 0 or 1 class so we can
evaluate them against the test labels.

predicted.nn.values$net.result <- sapply(predicted.nn.values$net.result,
round, digits = 0)

Now let's create a simple confusion matrix:

table(test$Private, predicted.nn.values$net.result)

Predicted No Predicted Yes
Actual No TN = 55 FP = 9
Actual Yes FN = 6 TP = 163

Exercise: Neural Network
Visualize

We can visualize the Neural Network by using the plot(nn) command. The black lines
represent the weighted vectors between the neurons. The blue line represents the bias
added. Unfortunately, even though the model is clearly a very powerful predictor, it is
not easy to directly interpret the weights. This means that we usually have to treat
Neural Network models more like black boxes.

plot(nn)

Exercise: Accuracy Terminology

Starting with the confusion matrix:

• True Positive is bottom right cell divided by sum of bottom row

• TP is also called Sensitivity or Recall or “did I correctly predict positive?”
• True Negative is top left divided by sum of top row; also called Specificity

• FP <- 1 – TN
• FN <- 1 – TP : Percent of observations in negative class

• Precision is True Positive / Total Positive

• F <- 2 * precision * recall / (precision + recall) - aka balanced mean
• Receiver Operating Characteristic Curve (ROC) – measures Sensitivity (TP) to

Specificity (TN). Visually, closer to right angle is better than diagonal.

Predicted No Predicted Yes
Actual No TN = 55 FP = 9
Actual Yes FN = 6 TP = 163

