
Introduction to OpenMP

John Urbanic
Parallel Computing Scientist

Pittsburgh Supercomputing Center

Copyright 2016

What is OpenMP?

It is a directive based standard to allow programmers

to develop threaded parallel codes on shared memory

computers.

Directives

Program myscience

 ... serial code ...

!$omp parallel do

 do k = 1,n1

 do i = 1,n2

 ... parallel code ...

 enddo

 enddo

!$omp end parallel do

 ...

End Program myscience

CPU

Your original

Fortran or C code

Simple compiler hints

from coder.

Compiler generates

parallel threaded code.

Ignorant compiler just

sees some comments.

OpenMP

Compiler

Hint

Directives: an awesome idea whose time has arrived.

main() {

 double pi = 0.0; long i;

 #pragma omp parallel for reduction(+:pi)

 for (i=0; i<N; i++)

 {

 double t = (double)((i+0.05)/N);

 pi += 4.0/(1.0+t*t);

 }

 printf(“pi = %f\n”, pi/N);

}

CPU

OpenMP

main() {

 double pi = 0.0; long i;

 #pragma acc kernels

 for (i=0; i<N; i++)

 {

 double t = (double)((i+0.05)/N);

 pi += 4.0/(1.0+t*t);

 }

printf(“pi = %f\n”, pi/N);

}

GPU

OpenACC

Key Advantages Of This Approach

High-level. No involvement of pthreads or hardware specifics.

Single source. No forking off a separate GPU code. Compile the same program

for multi-core or serial, non-parallel programmers can play along.

Efficient. Very favorable comparison to pthreads.

Performance portable. Easily scales to different configurations.

Incremental. Developers can port and tune parts of their application as

resources and profiling dictates. No wholesale rewrite required. Which can be

quick.

Broad Compiler Support (For 3.x)

GCC

MS Visual Studio

Intel

IBM

PGI

Cray

A True Standard With A History

POSIX threads

1997 OpenMP 1.0

1998 OpenMP 2.0

2005 OpenMP 2.5 (Combined C/C++/Fortran)

2008 OpenMP 3.0

2011 OpenMP 3.1

2013 OpenMP 4.0 (Accelerators)

OpenMP.org: specs and forums and useful links

 program hello

!$OMP PARALLEL

 print *,"Hello World."

!$OMP END PARALLEL

 stop
 end

int main(int argc, char** argv){

 #pragma omp parallel

 {

 printf("Hello world.\n");

 }

}

Hello World
Hello World in C Hello World in Fortran

Hello World.

Hello World.

Hello World.

Hello World.

Output with OMP_NUM_THREADS=4

General Directive Syntax and Scope

Fortran

!$omp parallel [clause …]
 structured block
!$omp end parallel

C

#pragma omp parallel [clause …]
 {

 structured block

 }

This is how these directives integrate into code:

I will indent the directives at the natural code indentation level for readability. It is a

common practice to always start them in the first column (ala #define/#ifdef). Either

is fine with C or Fortran 90 compilers.

clause: optional modifiers
Which we shall discuss

#include <pthread.h>

#include <stdio.h>

#define NUM_THREADS 4

void *PrintHello(void *threadid)

{

printf("Hello World.\n");

 pthread_exit(NULL);

}

int main (int argc, char *argv[])

{

 pthread_t threads[NUM_THREADS];

 int rc;

 long t;

 for(t=0; t<NUM_THREADS; t++){

 rc = pthread_create(&threads[t], NULL, PrintHello, (void *)t);

 if (rc){

 exit(-1);

 }

 }

 pthread_exit(NULL);

}

Pthreads

Big Difference!

With pthreads, we changed the structure of the original code. Non-

threading programmers can’t understand new code.

We have separate sections for the original flow, and the threaded code.

Serial path now gone forever.

This only gets worse as we do more with the code.

Exact same situation as assembly used to be. How much hand-assembled

code is still being written in HPC now that compilers have gotten so

efficient?

Thread vs. Process

A[0] = 10;

B[4][Y] = 20;

Y = Y + 1;

for (i=1;i<100;i++){

 A[i] = A[i]-1;

}

Y = 0;

B[0][0] = 30;

A[0] = 30;

A

B

Y

i

A[0] = 10;

B[4][Y] = 20;

Y = Y + 1;

for (i=1;i<100;i++){

 A[i] = A[i]-1;

}

Y = 0;

B[0][0] = 30;

A[0] = 30;

A

B

Y

i

A[0] = 10;

B[4][Y] = 20;

Y = Y + 1;

for (i=1;i<100;i++){

 A[i] = A[i]-1;

}

Y = 0;

B[0][0] = 30;

A[0] = 30;

A[0] = 10;

B[4][Y] = 20;

Y = Y + 1;

for (i=1;i<100;i++){

 A[i] = A[i]-1;

}

Y = 0;

B[0][0] = 30;

A[0] = 30;

A

B

Y

i

Two Processes Two Threads

MPI

General Thread Capability

Master

Thread

Spawned

Threads

Thread

Killed

Typical Desktop Application Threading

Open Browser Tabs (Spawn Thread) Close Browser Tab (Kill Thread)

Typical Game Threading

Game Physics

Rendering

AI

Synchronization

HPC Application Threading

.

.

.

A[0] = 10;

.

.

.

.

.

.

i = i+1;

.

.

.

.

.

for(…){

 B[100][100]

}

.

.

.

.

.

.

if (y=4){..

.

.

.

.

.

.

print X

.

.

.

.

.

for(…){

X[1000][10..

}

.

.

.

for or do loop for or do loop works on big array works on big array

HPC Use of OpenMP

This last fact means that we will emphasize the capabilities of OpenMP

with a different focus than non-HPC programmers.

We will focus on getting our kernels to parallelize well.

We will be most concerned with dependencies, and not deadlocks and

race conditions which confound other OpenMP applications.

This is very different from the generic approach you are likely to see

elsewhere. The “encyclopedic” version can obscure how easy it is to get

started with common loops.

This looks easy! Too easy…

Why don’t we just throw parallel for/do (the OpenMP command for this purpose)

in front of every loop?

Better yet, why doesn’t the compiler do this for me?

The answer is that there several general issues that would generate incorrect results

or program hangs if we don’t recognize them.

Data Dependencies

Data Races

Data Dependencies

Most directive based parallelization consists of splitting up big do/for

loops into independent chunks that the many processors can work on

simultaneously.

Take, for example, a simple for loop like this:

for(index=0, index<10000,index++)

 Array[index] = 4 * Array[index];

When run on 10 processors, it will execute something like

this…

for(index=0, index<999,index++)

 Array[index] = 4*Array[index];

Processor

1

for(index=1000, index<1999,index++)

 Array[index] = 4*Array[index];

Processor

2

for(index=2000, index<2999,index++)

 Array[index] = 4*Array[index];

Processor

3

for(index=3000, index<3999,index++)

 Array[index] = 4*Array[index];

Processor

4

for(index=4000, index<4999,index++)

 Array[index] = 4*Array[index];

Processor

5 ….

No Data Dependency

Data Dependency

But what if the loops are not entirely independent?

Take, for example, a similar loop like this:

for(index=1, index<10000,index++)

 Array[index] = 4 * Array[index] – Array[index-1];

This is perfectly valid serial code.

Data Dependency

Now Processor 2, in trying to calculate its first iteration,

for(index=1000, index<1999,index++)

 Array[1000] = 4 * Array[1000] – Array[999];

needs the result of Processor 1’s last iteration. If we want the correct

(“same as serial”) result, we need to wait until processor 1 finishes.

Likewise for processors 3, 4, …

Output Dependency

How about this spread out on those same 10 processors?

for (index=1; index<10000; index++){

 Array[index] = Array[index]+1

 X = Array[index];

}

There is no obvious dependence between iterations, but X may not get

set to Array[9999] as it would in the serial execution. Any one of the

PE’s may get the “final word”. Versions of this crop up and are called

Output Dependencies.

Recognizing and Eliminating Data Dependencies

Recognize dependencies by looking for:

A dependence between iterations. Often visible due to use of differing indices.

Is the variable written and also read?

Any non-indexed variables that are written to by index dependent variables.

You may get compiler warnings, and you may not.

Can these be overcome

Sometimes a simple rearrangement of the code will suffice. There is a common bag of

tricks developed for this as this issue goes back 40 years in HPC (for vectorized

computers). Many are quite trivial to apply.

We will now learn about OpenMP capabilities that will make some of these disappear.

Sometimes they are fundamental to the algorithm and there is no answer other than

rewrite completely or leave as serial.

But you must catch these!

Some applied OpenMP

Now that you know the general pitfalls and the general idea of how we accelerate

large loops, let’s look at how we apply these to some actual code with some actual

OpenMP.

How about a simple loop that does some basic math. Most scientific codes have more

sophisticated versions of something like this:

float height[1000], width[1000], cost_of_paint[1000];

float area, price_per_gallon = 20.00, coverage = 20.5;

.

.

for (index=0; index<1000; index++){

 area = height[index] * width[index];

 cost_of_paint[index] = area * price_per_gallon / coverage;

}

real*8 height(1000),width(1000),cost_of_paint(1000)

real*8 area, price_per_gallon, coverage

.

.

do index=1,1000

 area = height(index) * width(index)

 cost_of_paint(index) = area * price_per_gallon / coverage

end do

C Version Fortran Version

Applying Some OpenMP

A quick dab of OpenMP would start like this:

#pragma omp parallel for

for (index=0; index<1000; index++){

 area = height[index] * width[index];

 cost_of_paint[index] = area * price_per_gallon / coverage;

}

!$omp parallel do

do index=1,1000

 area = height(index) * width(index)

 cost_of_paint(index) = area * price_per_gallon / coverage

end do

!$omp end parallel do

C Version Fortran Version

We are requesting that this for/do loop be executed in parallel on the available

processors. This might be considered the most basic OpenMP construct.

Compile and Run

Fortran:

pgf90 –mp paintcost.f

export OMP_NUM_THREADS=8

a.out

We may as well follow through and see how we would compile and run this. We are

using PGI compilers here. Others are very similar (-fopenmp, -omp). Likewise, if you

are using a different command shell, you may do “setenv OMP_NUM_THREADS 8”.

C:

pgcc –mp paintcost.c

export OMP_NUM_THREADS=8

a.out

A few items to remember, but we will appreciate the flexibility these parameters

afford us as we get more sophisticated with our optimization.

Activate

OpenMP

directives Run with 8

threads

Something is wrong.

If we ran this code we would find that sometimes our results differ from the serial

code (and are simply wrong). The reason is that we have a shared variable that is

getting overwritten by all of the threads.

#pragma omp parallel for

for (index=0; index<1000; index++){

 area = height[index] * width[index];

 cost_of_paint[index] = area * price_per_gallon / coverage;

}

!$omp parallel do

do index=1,1000

 area = height(index) * width(index)

 cost_of_paint(index) = area * price_per_gallon / coverage

end do

!$omp end do

Between it’s assignment and use there are (7 here) other threads accessing and

changing it. This is obviously not what we want.

Shared Variables

.

.

for (index=0; index<1000; index++){

 area = height[index] * width[index];

 cost_of_paint[index] = area * price…

}

.

.

height

area

width

cost_of_paint

With Two Threads

.

.

for (index=0; index<1000; index++){

 area = height[index] * width[index];

 cost_of_paint[index] = area * price…

}

.

.

By default variables are shared in OpenMP. Exceptions include index variables and

variables declared inside parallel regions (C/C++). More later.

What We Want

.

.

for (index=0; index<1000; index++){

 area = height[index] * width[index];

 cost_of_paint[index] = area * price…

}

.

.

height

area

width

cost_of_paint

With Two Threads

.

.

for (index=0; index<1000; index++){

 area = height[index] * width[index];

 cost_of_paint[index] = area * price…

}

.

.

We can accomplish this with the private clause.

area area

Private Clause At Work

Apply the private clause and we have a working loop:

#pragma omp parallel for private(area)

for (index=0; index<1000; index++){

 area = height[index] * width[index];

 cost_of_paint[index] = area * price_per_gallon / coverage;

}

!$omp parallel do private(area)

do index=1,1000

 area = height(index) * width(index)

 cost_of_paint(index) = area * price_per_gallon / coverage

end do

!$omp end parallel do

C Version Fortran Version

There are several ways we might wish these controlled variables to behave. Let’s

look at the related data sharing clauses. private is the most common by far.

Other Data Sharing Clauses

shared(list) This is the default (with the exception of index and locally declared

variables. You might use this clause for clarification purposes.

firstprivate(list) This will initialize the privates with the value from the master thread.

Otherwise, this does not happen!

lastprivate(list) This will copy out the last thread value into the master thread copy.

Otherwise, this does not happen! Available in for/do loop or section only,

not available where “last iteration” isn’t clearly defined.

default(list) You can change the default type to some of the others.

threadprivate(list) Define at global level and these privates will be available in every parallel

region. Use with copyin() to initialize values from master thread.

What is automatically private?

The default rules for sharing (which you should never be shy about redundantly

designating with clauses) have a few subtleties.

Default is shared, except for…

local variables in any called subroutine, unless using static (C) or save (Fortran)

loop index variable

inner loop index variables in Fortran, but not in C.

variables declared within the block (for C).

These last two points make the C99 loop syntax quite convenient:

#pragma omp parallel for

for (int i = 0; i <= n; i++){

 for (int j = 0; j<= m; j++){

 Array[i][j] = Array[i][j]+1

 }

}

Loop Order and Depth

The parallel for/do loop is in common and enough that we want to make sure we

really understand what is going on.

#pragma omp parallel for private (i,j)

for (i = 0; i <= n; i++){

 for (j = 0; j<= m; j++){

 Array[i][j] = Array[i][j]+1

 }

}

!$omp parallel do private (i,j)

 do i = 2,n

 do j = 2,i-1

 Array(j,i) = Array(j,i)+1

 end do

 end do

!$omp end parallel do

Optional j is required

Loop

that is

parallelized
Index order reversed

(for good reason)

In general (well beyond OpenMP reasons), you want your innermost loop to index over

adjacent items in memory. This is opposite for Fortran and C. In C this last index

changes fastest. We can collapse nested loops with a collapse(n) clause.

Prime Accelerator
Let’s see what we can do with a simple program that counts prime numbers.

include <stdlib.h>

include <stdio.h>

int main (int argc, char *argv[]){

 int n = 500000;

 int not_primes=0;

 int i,j;

 for (i = 2; i <= n; i++){

 for (j = 2; j < i; j++){

 if (i % j == 0){

 not_primes++;

 break;

 }

 }

 }

 printf("Primes: %d\n", n - not_primes);

}

 program primes

 integer n, not_primes, i, j

 n = 500000

 not_primes=0

 do i = 2,n

 do j = 2,i-1

 if (mod(i,j) == 0) then

 not_primes = not_primes + 1

 exit

 end if

 end do

 end do

 print *, 'Primes: ', n - not_primes

 end program

C Version Fortran Version

Prime Accelerator

The most obvious thing is to parallelize the main loop.

 #pragma omp parallel for private (j)

 for (i = 2; i <= n; i++){

 for (j = 2; j < i; j++){

 if (i % j == 0){

 not_primes++;

 break;

 }

 }

 }

!$omp parallel do

 do i = 2,n

 do j = 2,i-1

 if (mod(i,j) == 0) then

 not_primes = not_primes + 1

 exit

 end if

 end do

 end do

!$omp end parallel do

C Version Fortran Version

If we run this code on multiple threads, we will find that we get inconsistent results.

What is going on?

Data Races

The problem here is a shared variable (not_primes) that is being written to by many

threads.

The statement not_primes = not_primes + 1 may look “atomic”, but in reality it

requires the processor to first read, then update, then write the variable into

memory. While this is happening, another thread may be writing it’s own (now

obsolete) update. In this case, some of the additions to not_primes may be

overwritten and ignored.

Will private fix this? Private variables aren’t subject to data races, and we will end up

with multiple valid not_prime subtotals. The question then becomes, how do we sum

these up into the real total we are looking for?

Reductions

The answer is to use the data reduction data clause designed for just this common

case.

 #pragma omp parallel for private (j) \

 reduction(+: not_primes)

 for (i = 2; i <= n; i++){

 for (j = 2; j < i; j++){

 if (i % j == 0){

 not_primes++;

 break;

 }

 }

 }

!$omp parallel do reduction(+:not_primes)

 do i = 2,n

 do j = 2,i-1

 if (mod(i,j) == 0) then

 not_primes = not_primes + 1

 exit

 end if

 end do

 end do

!$omp end parallel do

C Version Fortran Version

At the end of the parallel region (the do/for loop), the private reduction variables will

get combined using the operation we specified. Here, it is sum (+).

Reductions

In addition to sum, we have a number of other options. You will find sum, min and

max to be the most common. Note that the private variable copies are all initialized

to the values specified.

Operation Initialization

+ 0

max least number possible

min largest number possible

- 0

Bit (&, |, ^, iand, ior) ~0, 0

Logical (&&, ||, .and., .or.) 1,0, .true., .false.

We shall return.

 #pragma omp parallel for private (j) \

 reduction(+:not_primes)

 for (i = 2; i <= n; i++){

 for (j = 2; j < i; j++){

 if (i % j == 0){

 not_primes++;

 break;

 }

 }

 }

!$omp parallel do reduction(+:not_primes)

 do i = 2,n

 do j = 2,i-1

 if (mod(i,j) == 0) then

 not_primes = not_primes + 1

 exit

 end if

 end do

 end do

!$omp end parallel do

 C Version
Fortran Version

A few notes before we leave (for now):

• The OpenMP standard forbids branching out of parallel do/for loops. Since the outside loop is the threaded

one (that is how it works), our break/exit statement for the inside loop are OK.

• You can verify the output at primes.utm.edu/nthprime/index.php#piofx Note that we count 1 as prime.

They do not.

Our Foundation Exercise: Laplace Solver

I’ve been using this for MPI, OpenMP and OpenACC. It is a great simulation problem, not rigged for OpenMP.

In this most basic form, it solves the Laplace equation: 𝛁𝟐𝒇(𝒙, 𝒚) = 𝟎

The Laplace Equation applies to many physical problems, including:

Electrostatics

Fluid Flow

Temperature

For temperature, it is the Steady State Heat Equation:

Metal

Plate

Heating

Element

Initial Conditions Final Steady State

Metal

Plate

Exercise Foundation: Jacobi Iteration

The Laplace equation on a grid states that each grid point is the average of it’s

neighbors.

We can iteratively converge to that state by repeatedly computing new values at

each point from the average of neighboring points.

We just keep doing this until the difference from one pass to the next is small

enough for us to tolerate.

A(i,j) A(i+1,j) A(i-1,j)

A(i,j-1)

A(i,j+1)

𝐴𝑘+1 𝑖, 𝑗 =
𝐴𝑘(𝑖 − 1, 𝑗) + 𝐴𝑘 𝑖 + 1, 𝑗 + 𝐴𝑘 𝑖, 𝑗 − 1 + 𝐴𝑘 𝑖, 𝑗 + 1

4

Serial Code Implementation

for(i = 1; i <= ROWS; i++) {
 for(j = 1; j <= COLUMNS; j++) {
 Temperature[i][j] = 0.25 * (Temperature_last[i+1][j] + Temperature_last[i-1][j] +
 Temperature_last[i][j+1] + Temperature_last[i][j-1]);
 }
}

do j=1,columns
 do i=1,rows
 temperature(i,j)= 0.25 * (temperature_last(i+1,j)+temperature_last(i-1,j) + &
 temperature_last(i,j+1)+temperature_last(i,j-1))
 enddo
enddo

while (dt > MAX_TEMP_ERROR && iteration <= max_iterations) {

 for(i = 1; i <= ROWS; i++) {
 for(j = 1; j <= COLUMNS; j++) {
 Temperature[i][j] = 0.25 * (Temperature_last[i+1][j] + Temperature_last[i-1][j] +
 Temperature_last[i][j+1] + Temperature_last[i][j-1]);
 }
 }

 dt = 0.0;

 for(i = 1; i <= ROWS; i++){
 for(j = 1; j <= COLUMNS; j++){
 dt = fmax(fabs(Temperature[i][j]-Temperature_last[i][j]), dt);
 Temperature_last[i][j] = Temperature[i][j];
 }
 }

 if((iteration % 100) == 0) {
 track_progress(iteration);
 }

 iteration++;

}

Serial C Code (kernel)

Calculate

Update

temp

array and

find max

change

Output

Done?

void initialize(){

 int i,j;

 for(i = 0; i <= ROWS+1; i++){
 for (j = 0; j <= COLUMNS+1; j++){
 Temperature_last[i][j] = 0.0;
 }
 }

 // these boundary conditions never change throughout run

 // set left side to 0 and right to a linear increase
 for(i = 0; i <= ROWS+1; i++) {
 Temperature_last[i][0] = 0.0;
 Temperature_last[i][COLUMNS+1] = (100.0/ROWS)*i;
 }

 // set top to 0 and bottom to linear increase
 for(j = 0; j <= COLUMNS+1; j++) {
 Temperature_last[0][j] = 0.0;
 Temperature_last[ROWS+1][j] = (100.0/COLUMNS)*j;
 }
}

Serial C Code Subroutines

void track_progress(int iteration) {

 int i;

 printf("-- Iteration: %d --\n", iteration);
 for(i = ROWS-5; i <= ROWS; i++) {
 printf("[%d,%d]: %5.2f ", i, i,Temperature[i][i]);
 }
 printf("\n");
}

BCs could run from 0

to ROWS+1 or from 1

to ROWS. We chose

the former.

#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include <sys/time.h>

// size of plate
#define COLUMNS 1000
#define ROWS 1000

// largest permitted change in temp (This value takes about 3400 steps)
#define MAX_TEMP_ERROR 0.01

double Temperature[ROWS+2][COLUMNS+2]; // temperature grid
double Temperature_last[ROWS+2][COLUMNS+2]; // temperature grid from last iteration

// helper routines
void initialize();
void track_progress(int iter);

int main(int argc, char *argv[]) {

 int i, j; // grid indexes
 int max_iterations; // number of iterations
 int iteration=1; // current iteration
 double dt=100; // largest change in t
 struct timeval start_time, stop_time, elapsed_time; // timers

 printf("Maximum iterations [100-4000]?\n");
 scanf("%d", &max_iterations);

 gettimeofday(&start_time,NULL); // Unix timer

 initialize(); // initialize Temp_last including boundary conditions

 // do until error is minimal or until max steps
 while (dt > MAX_TEMP_ERROR && iteration <= max_iterations) {

 // main calculation: average my four neighbors
 for(i = 1; i <= ROWS; i++) {
 for(j = 1; j <= COLUMNS; j++) {
 Temperature[i][j] = 0.25 * (Temperature_last[i+1][j] + Temperature_last[i-1][j] +
 Temperature_last[i][j+1] + Temperature_last[i][j-1]);
 }
 }

 dt = 0.0; // reset largest temperature change

 // copy grid to old grid for next iteration and find latest dt
 for(i = 1; i <= ROWS; i++){
 for(j = 1; j <= COLUMNS; j++){
 dt = fmax(fabs(Temperature[i][j]-Temperature_last[i][j]), dt);
 Temperature_last[i][j] = Temperature[i][j];
 }
 }

 // periodically print test values
 if((iteration % 100) == 0) {
 track_progress(iteration);
 }

 iteration++;
 }

Whole C Code

 gettimeofday(&stop_time,NULL);
 timersub(&stop_time, &start_time, &elapsed_time); // Unix time subtract routine

 printf("\nMax error at iteration %d was %f\n", iteration-1, dt);
 printf("Total time was %f seconds.\n", elapsed_time.tv_sec+elapsed_time.tv_usec/1000000.0);

}

// initialize plate and boundary conditions
// Temp_last is used to to start first iteration
void initialize(){

 int i,j;

 for(i = 0; i <= ROWS+1; i++){
 for (j = 0; j <= COLUMNS+1; j++){
 Temperature_last[i][j] = 0.0;
 }
 }

 // these boundary conditions never change throughout run

 // set left side to 0 and right to a linear increase
 for(i = 0; i <= ROWS+1; i++) {
 Temperature_last[i][0] = 0.0;
 Temperature_last[i][COLUMNS+1] = (100.0/ROWS)*i;
 }

 // set top to 0 and bottom to linear increase
 for(j = 0; j <= COLUMNS+1; j++) {
 Temperature_last[0][j] = 0.0;
 Temperature_last[ROWS+1][j] = (100.0/COLUMNS)*j;
 }
}

// print diagonal in bottom right corner where most action is
void track_progress(int iteration) {

 int i;

 printf("---------- Iteration number: %d ------------\n", iteration);
 for(i = ROWS-5; i <= ROWS; i++) {
 printf("[%d,%d]: %5.2f ", i, i, Temperature[i][i]);
 }
 printf("\n");
}

 do while (dt > max_temp_error .and. iteration <= max_iterations)

 do j=1,columns
 do i=1,rows
 temperature(i,j)=0.25*(temperature_last(i+1,j)+temperature_last(i-1,j)+ &
 temperature_last(i,j+1)+temperature_last(i,j-1))
 enddo
 enddo

 dt=0.0

 do j=1,columns
 do i=1,rows
 dt = max(abs(temperature(i,j) - temperature_last(i,j)), dt)
 temperature_last(i,j) = temperature(i,j)
 enddo
 enddo

 if(mod(iteration,100).eq.0) then
 call track_progress(temperature, iteration)
 endif

 iteration = iteration+1

 enddo

Serial Fortran Code (kernel)

Calculate

Update

temp

array and

find max

change

Output

Done?

subroutine initialize(temperature_last)
 implicit none

 integer, parameter :: columns=1000
 integer, parameter :: rows=1000
 integer :: i,j

 double precision, dimension(0:rows+1,0:columns+1) :: temperature_last

 temperature_last = 0.0

 !these boundary conditions never change throughout run

 !set left side to 0 and right to linear increase
 do i=0,rows+1
 temperature_last(i,0) = 0.0
 temperature_last(i,columns+1) = (100.0/rows) * i
 enddo

 !set top to 0 and bottom to linear increase
 do j=0,columns+1
 temperature_last(0,j) = 0.0
 temperature_last(rows+1,j) = ((100.0)/columns) * j
 enddo

end subroutine initialize

Serial Fortran Code Subroutines

subroutine track_progress(temperature, iteration)
 implicit none

 integer, parameter :: columns=1000
 integer, parameter :: rows=1000
 integer :: i,iteration

 double precision, dimension(0:rows+1,0:columns+1) :: temperature

 print *, '---------- Iteration number: ', iteration, ' ---------------'
 do i=5,0,-1
 write (*,'("("i4,",",i4,"):",f6.2," ")',advance='no'), &
 rows-i,columns-i,temperature(rows-i,columns-i)
 enddo
 print *

program serial
 implicit none

 !Size of plate
 integer, parameter :: columns=1000
 integer, parameter :: rows=1000
 double precision, parameter :: max_temp_error=0.01

 integer :: i, j, max_iterations, iteration=1
 double precision :: dt=100.0
 real :: start_time, stop_time

 double precision, dimension(0:rows+1,0:columns+1) :: temperature, temperature_last

 print*, 'Maximum iterations [100-4000]?'
 read*, max_iterations

 call cpu_time(start_time) !Fortran timer

 call initialize(temperature_last)

 !do until error is minimal or until maximum steps
 do while (dt > max_temp_error .and. iteration <= max_iterations)

 do j=1,columns
 do i=1,rows
 temperature(i,j)=0.25*(temperature_last(i+1,j)+temperature_last(i-1,j)+ &
 temperature_last(i,j+1)+temperature_last(i,j-1))
 enddo
 enddo

 dt=0.0

 !copy grid to old grid for next iteration and find max change
 do j=1,columns
 do i=1,rows
 dt = max(abs(temperature(i,j) - temperature_last(i,j)), dt)
 temperature_last(i,j) = temperature(i,j)
 enddo
 enddo

 !periodically print test values
 if(mod(iteration,100).eq.0) then
 call track_progress(temperature, iteration)
 endif

 iteration = iteration+1

 enddo

 call cpu_time(stop_time)

 print*, 'Max error at iteration ', iteration-1, ' was ',dt
 print*, 'Total time was ',stop_time-start_time, ' seconds.'

end program serial

Whole Fortran Code

! initialize plate and boundery conditions
! temp_last is used to to start first iteration
subroutine initialize(temperature_last)
 implicit none

 integer, parameter :: columns=1000
 integer, parameter :: rows=1000
 integer :: i,j

 double precision, dimension(0:rows+1,0:columns+1) :: temperature_last

 temperature_last = 0.0

 !these boundary conditions never change throughout run

 !set left side to 0 and right to linear increase
 do i=0,rows+1
 temperature_last(i,0) = 0.0
 temperature_last(i,columns+1) = (100.0/rows) * i
 enddo

 !set top to 0 and bottom to linear increase
 do j=0,columns+1
 temperature_last(0,j) = 0.0
 temperature_last(rows+1,j) = ((100.0)/columns) * j
 enddo

end subroutine initialize

!print diagonal in bottom corner where most action is
subroutine track_progress(temperature, iteration)
 implicit none

 integer, parameter :: columns=1000
 integer, parameter :: rows=1000
 integer :: i,iteration

 double precision, dimension(0:rows+1,0:columns+1) :: temperature

 print *, '---------- Iteration number: ', iteration, ' ---------------'
 do i=5,0,-1
 write (*,'("("i4,",",i4,"):",f6.2," ")',advance='no'), &
 rows-i,columns-i,temperature(rows-i,columns-i)
 enddo
 print *
end subroutine track_progress

Exercise 1: Use OpenMP to parallelize the Jacobi loops
(About 45 minutes)

1) Edit laplace_serial.c or laplace_serial.f90 (your choice) and add directives where it helps.

2) Run your code on various numbers of cores (such as 8, per below) and see what kind of speedup

you achieve.

> pgcc -mp laplace_omp.c or pgf90 -mp laplace_omp.f90

> export OMP_NUM_THREADS=8

> a.out

Fortran Timing Note

C:

#include <omp.h>

double start_time = omp_get_wtime();

…

double end_time = omp_get_wtime();

Fortran:

use omp_lib

double precision :: start_time, stop_time

start_time = omp_get_wtime()

…

end_time = omp_get_wtime()

On some platforms the universal Fortran cpu_time() function will report aggregate cpu

time. You can divide your answer by the number of threads to get an effective answer.

Or, you can take this opportunity to start using some of the useful OpenMP run time

library – namely omp_get_time().

Exercise 1 C Solution

while (dt > MAX_TEMP_ERROR && iteration <= max_iterations) {

 #pragma omp parallel for private(i,j)
 for(i = 1; i <= ROWS; i++) {
 for(j = 1; j <= COLUMNS; j++) {
 Temperature[i][j] = 0.25 * (Temperature_last[i+1][j] + Temperature_last[i-1][j] +
 Temperature_last[i][j+1] + Temperature_last[i][j-1]);
 }
 }

 dt = 0.0; // reset largest temperature change

 #pragma omp parallel for reduction(max:dt) private(i,j)
 for(i = 1; i <= ROWS; i++){
 for(j = 1; j <= COLUMNS; j++){
 dt = fmax(fabs(Temperature[i][j]-Temperature_last[i][j]), dt);
 Temperature_last[i][j] = Temperature[i][j];
 }
 }

 if((iteration % 100) == 0) {
 track_progress(iteration);
 }

 iteration++;
}

Thread this loop

Also this one, with a

reduction

Exercise 1 Fortran Solution
 do while (dt > max_temp_error .and. iteration <= max_iterations)

 !$omp parallel do
 do j=1,columns
 do i=1,rows
 temperature(i,j)=0.25*(temperature_last(i+1,j)+temperature_last(i-1,j)+ &
 temperature_last(i,j+1)+temperature_last(i,j-1))
 enddo
 enddo
 !$omp end parallel do

 dt=0.0

 !$omp parallel do reduction(max:dt)
 do j=1,columns
 do i=1,rows
 dt = max(abs(temperature(i,j) - temperature_last(i,j)), dt)
 temperature_last(i,j) = temperature(i,j)
 enddo
 enddo
 !$omp end parallel do

 if(mod(iteration,100).eq.0) then
 call track_progress(temperature, iteration)
 endif

 iteration = iteration+1

 enddo

Thread this loop

Also here, plus a

reduction

Scaling?

For the solution in the Laplace directory, we found this kind of scaling when running

to convergence at 3372 iterations.

Codes were compiled with no extra flags, and there was some minor variability.

Threads C (s) Fortran (s) Speedup

1 18.7 18.7

2 9.4 9.4 1.99

4 4.7 4.7 3.98

8 2.5 2.5 7.48

16 1.4 1.4 13.4

28 0.89 0.86 21.5

Time for a breather.

Congratulations, you have now mastered the OpenMP parallel for/do

loop. That is a pretty solid basis for using OpenMP. To recap, you just

have to keep an eye out for:

Dependencies

Data races

and know how to deal with them using

Private variables

Reductions

Fortran 90
Fortran 90 has data parallel constructs that map

very well to threads. You can declare a

workshare region and OpenMP will do the right

thing for:

FORALL

WHERE

Array assignments

 PROGRAM WORKSHARE

 INTEGER N, I, J
 PARAMETER (N=100)
 REAL AA(N,N), BB(N,N), CC(N,N), DD(N,N)
 .
 .
 .
!$OMP PARALLEL SHARED(AA,BB,CC,DD,FIRST,LAST)

!$OMP WORKSHARE
 CC = AA * BB
 DD = AA + BB
 FIRST = CC(1,1) + DD(1,1)
 LAST = CC(N,N) + DD(N,N)
!$OMP END WORKSHARE

!$OMP END PARALLEL

 END

Different Work Sharing Constructs

Master

Thread

parallel

for/do

parallel

for/do
parallel

for/do

Master

Thread

for/do

parallel region

for/do for/do

What we have been doing

What we could do (less overhead, finer control, more flexible algorithms)

Number of Threads in a Parallel Region

In order of precedence:

IF clause Logical value determines if this region is parallel or serial.

NUM_THREADS clause Set this to specify how many threads in this region.

omp_set_num_threads() A library API to set the threads.

OMP_NUM_THREADS The environment variable we have been using.

Default Often the number of cores on the node.

There is also, depending on the compute environment, the possibility of dynamic thread counts.

There are a few library APIs to deal with that.

Parallel Region with C
#pragma omp parallel shared(t, t_old) private(i,j, iter) firstprivate(niter)
for(iter = 1; iter <= niter; iter++) {

 #pragma omp for
 for(i = 1; i <= NR; i++) {
 for(j = 1; j <= NC; j++) {
 t[i][j] = 0.25 * (t_old[i+1][j] + t_old[i-1][j] +
 t_old[i][j+1] + t_old[i][j-1]);
 }
 }

 dt = 0.0;

 #pragma omp for reduction(max:dt)
 for(i = 1; i <= NR; i++){
 for(j = 1; j <= NC; j++){
 dt = fmax(fabs(t[i][j]-t_old[i][j]), dt);
 t_old[i][j] = t[i][j];
 }
 }
 if((iter % 100) == 0) {
 print_trace(iter);
 }
}

This is a simpler loop

than our actual exercise’s two

condition while loop.

Working example in slide notes

below is not that complicated, but

we will skip it for the nonce.

Parallel Region with Fortran
!$omp parallel shared(T, Told) private(i,j,iter) firstprivate(niter)
 do iter=1,niter
 !$omp do
 do j=1,NC
 do i=1,NR
 T(i,j) = 0.25 * (Told(i+1,j)+Told(i-1,j)+
 $ Told(i,j+1)+Told(i,j-1))
 enddo
 enddo
 !$omp end do

 dt = 0

 !$omp do reduction(max:dt)
 do j=1,NC
 do i=1,NR
 dt = max(abs(t(i,j) - told(i,j)), dt)
 Told(i,j) = T(i,j)
 enddo
 enddo
 !$omp end do

 if(mod(iter,100).eq.0) then
 call print_trace(t, iter)
 endif
 enddo
!$omp end parallel

Thread control.

If we did this, we would get correct results, but we would also find that out output

is a mess.

How many iterations [100-1000]? 1000

---------- Iteration number: 100 ------------

[995,995]: 63.33 [996,996]: 72.67 [997,997]: 81.40 [998,998]: 88.97 [999,999]: 94.86 [1000,1000]: 98.67 ---------- Iteration number:

100 ------------

[995,995]: 63.33 [996,996]: 72.67 [997,997]: 81.40 [998,998]: 88.97 ---------- Iteration number: 100 ------------

[995,995]: 63.33 [996,996]: 72.67 [997,997]: 81.40 [998,998]: 88.97 [999,999]: 94.86 [1000,1000]: 98.67

---------- Iteration number: 100 ------------

[995,995]: 63.33 [996,996]: 72.67

[999,999]: 94.86 [1000,1000]: 98.67

All of our threads are doing output. We only want the master thread to do this.

This is where we find the rich set of thread control tools available to us in OpenMP.

Solution with Master

.

.
!$omp master
 if(mod(iter,100).eq.0) then
 call print_trace(t, iter)
 endif
!$omp end master
.
.

.

.

.
#pragma omp master
if((iter % 100) == 0) {
 print_trace(iter);
}
.
.

The Master directive will only allow the region to be executed by the master thread.

Other threads skip. By skip we mean race ahead. To the next iteration. We really

should have a “omp barrier” after this or threads could already be altering t as we

are writing it out. Life in parallel regions can get tricky!

Barrier
.
.
!$omp master
 if(mod(iter,100).eq.0) then
 call print_trace(t, iter)
 endif
!$omp end master

!$omp barrier
.
.

.

.

.
#pragma omp master
if((iter % 100) == 0) {
 print_trace(iter);
}
#pragma omp barrier
.
.

A barrier is executed by all threads only at:

A barrier command

Entry to and exit from a parallel region

Exit only from a worksharing command (like do/for)

Except if we use the nowait clause

There are no barriers for any other constructs including and master and critical!

Solution with thread IDs

.

.
 tid = OMP_GET_THREAD_NUM()
 if(tid .eq. 0) then
 if(mod(iter,100).eq.0) then
 call print_trace(t, iter)
 endif
 endif
.
.

.

.

.
tid = omp_get_thread_num();
if (tid == 0) {
 if((iter % 100) == 0) {
 print_trace(iter);
 }
}
.
.

Now we are using OpenMP runtime library routines, and not directives. We would

have to use ifdef if we wanted to preserve the serial version. Also, we should

include a barrier somewhere here as well.

Other Synchronization Directives & Clauses

single Like Master, but any thread will do. Has a copyprivate clause that can

be used to copy its private values to all other threads.

atomic Eliminates data race on this one specific location.

critical Only one thread at a time can go through this section.

ordered Forces serial order on loops.

nowait This clause will eliminate implied barriers on certain directives.

flush Even cache coherent architectures need this to eliminate possibility of

register storage issues. Tricky, but important iff you get tricky. We will

return to this.

Another Work Sharing Construct

Master

Thread

Sections

Section 2

Section 3

Section 4 Section 3

Section 1

Section 2

Section 1

Each section will be processed by one thread. The number of sections can be

greater of less than the number of threads available – in which case threads will do

more than one section or skip, respectively.

Sections
.
.
!$OMP PARALLEL SHARED(A,B,X,Y), PRIVATE(INDEX)

!$OMP SECTIONS

!$OMP SECTION
 DO INDEX = 1, N
 X(INDEX) = A(INDEX) + B(INDEX)
 ENDDO

!$OMP SECTION
 DO INDEX = 1, N
 Y(INDEX) = A(INDEX) * B(INDEX)
 ENDDO

!$OMP END SECTIONS

!$OMP END PARALLEL
.
.

.

.

.
#pragma omp parallel shared(a,b,x,y) private(index)
 {

 #pragma omp sections
 {

 #pragma omp section
 for (index=0; index <n; index++)
 x[i] = a[i] + b[i];

 #pragma omp section
 for (index=0; index <n; index++)
 y[i] = a[i] * b[i];

 }

 }
.
.

Both for/do loops run concurrently. Still same results as serial here.

And for ultimate flexibility: Tasks

Any thread can spin off tasks. And, any thread can pick up a task. They will all wait

for completion at the end of the region.

Master

Thread

parallel region

Fibonacci Tasks
int fib(int n)
{
 int i, j;

 if (n<2)
 return n;

 else {

 #pragma omp task shared(i) firstprivate(n)
 i=fib(n-1);

 #pragma omp task shared(j) firstprivate(n)
 j=fib(n-2);

 #pragma omp taskwait
 return i+j;
 }
}

#include <stdio.h>
#include <omp.h>

int main()
{
 int n = 10;

 #pragma omp parallel shared(n)
 {
 #pragma omp single
 printf ("fib(%d) = %d\n", n, fib(n));
 }
}

Our tasks are spinning off tasks recursively! The threads will

eventually pick them all off.

Task Capability

Tasks have some additional directives and clauses.

taskwait (wait for completion of child tasks, should almost always use)

taskgroup (wait on child & descendants)

taskyield (can suspend for another task, avoid deadlock)

final (no more task creation after this level)

untied (can change thread dynamically)

mergable (can merge data with enclosing region)

depend (list variable dependencies between tasks [in/out/inout]

 This provides a way to order workflow.)

We won’t go into them further, because you only need to know they exist in case you are

one of the sophisticated HPC applications that needs this. This capability is useful for:

Graphs

Any kind of pointer chasing

Is this starting to seem tricky?

As we have started to get away from the simplicity of the do/for loop

and pursue the freedom of parallel regions and individual thread

control, we have started to encounter subtle pitfalls.

So, you may be relieved to know that we have covered almost all of

the OpenMP directives at this point. However, there are a few more

run-time library routines to mention…

Run-time Library Routines
OMP_SET_NUM_THREADS Sets the number of threads that will be used in the next parallel region

OMP_GET_NUM_THREADS Returns the number of threads that are currently in the team executing the parallel region from which it is called

OMP_GET_MAX_THREADS Returns the maximum value that can be returned by a call to the OMP_GET_NUM_THREADS function

OMP_GET_THREAD_NUM Returns the thread number of the thread, within the team, making this call.

OMP_GET_THREAD_LIMIT Returns the maximum number of OpenMP threads available to a program

OMP_GET_NUM_PROCS Returns the number of processors that are available to the program

OMP_IN_PARALLEL Used to determine if the section of code which is executing is parallel or not

OMP_SET_DYNAMIC Enables or disables dynamic adjustment of the number of threads available for execution of parallel regions

OMP_GET_DYNAMIC Used to determine if dynamic thread adjustment is enabled or not

OMP_SET_NESTED Used to enable or disable nested parallelism

OMP_GET_NESTED Used to determine if nested parallelism is enabled or not

OMP_SET_SCHEDULE Sets the loop scheduling policy when "runtime" is used as the schedule kind in the OpenMP directive

OMP_GET_SCHEDULE Returns the loop scheduling policy when "runtime" is used as the schedule kind in the OpenMP directive

OMP_SET_MAX_ACTIVE_LEVELS Sets the maximum number of nested parallel regions

OMP_GET_MAX_ACTIVE_LEVELS Returns the maximum number of nested parallel regions

OMP_GET_LEVEL Returns the current level of nested parallel regions

OMP_GET_ANCESTOR_THREAD_NUM Returns, for a given nested level of the current thread, the thread number of ancestor thread

OMP_GET_TEAM_SIZE Returns, for a given nested level of the current thread, the size of the thread team

OMP_GET_ACTIVE_LEVEL Returns the number of nested, active parallel regions enclosing the task that contains the call

OMP_IN_FINAL Returns true if the routine is executed in the final task region; otherwise it returns false

OMP_INIT_LOCK Initializes a lock associated with the lock variable

OMP_DESTROY_LOCK Disassociates the given lock variable from any locks

OMP_SET_LOCK Acquires ownership of a lock

OMP_UNSET_LOCK Releases a lock

OMP_TEST_LOCK Attempts to set a lock, but does not block if the lock is unavailable

OMP_INIT_NEST_LOCK Initializes a nested lock associated with the lock variable

OMP_DESTROY_NEST_LOCK Disassociates the given nested lock variable from any locks

OMP_SET_NEST_LOCK Acquires ownership of a nested lock

OMP_UNSET_NEST_LOCK Releases a nested lock

OMP_TEST_NEST_LOCK Attempts to set a nested lock, but does not block if the lock is unavailable

Locks

Thread 2 - in locked region
Thread 2 - in locked region
Thread 2 - in locked region
Thread 2 - in locked region
Thread 2 - in locked region
Thread 2 - ending locked region
Thread 0 - in locked region
Thread 0 - in locked region
Thread 0 - in locked region
Thread 0 - in locked region
Thread 0 - in locked region
Thread 0 - ending locked region
Thread 1 - in locked region
Thread 1 - in locked region
Thread 1 - in locked region
Thread 1 - in locked region
Thread 1 - in locked region
Thread 1 - ending locked region
Thread 3 - in locked region
Thread 3 - in locked region
Thread 3 - in locked region
Thread 3 - in locked region
Thread 3 - in locked region
Thread 3 - ending locked region

#include <stdio.h>
#include <omp.h>

omp_lock_t my_lock;

int main() {

 omp_init_lock(&my_lock);

 #pragma omp parallel
 {

 int tid = omp_get_thread_num();
 int i;

 omp_set_lock(&my_lock);

 for (i = 0; i < 5; ++i) {
 printf("Thread %d - in locked region\n", tid);
 }

 printf("Thread %d - ending locked region\n", tid);

 omp_unset_lock(&my_lock);

 }

 omp_destroy_lock(&my_lock);
}

This could have been done with just an omp critical!

Output

Pthreads like flexibility

We now have the ability to start coding just about any kind of thread flow we can

imagine. And, we can start creating all kinds of subtle and non-repeatable bugs. This is

normally where we start the fun of cataloging all of the ways we can get into trouble:

Race conditions

Deadlocks

Livelocks

Missing flush

So, what are the benefits of these paradigms? Efficiency

Thread A Thread B

Lock(USB Drive) Lock(File)
Lock(File) Lock(USB Drive)
Copy(File) Copy(File)
Unlock(File) Unlock(USB Drive)
Unlock(USB Drive) Unlock(File)

Deadlock

flush

If you start delving into these capabilities, you need to understand the flush

command. Even shared memory machines have cache issues and compiler

instruction reordering that can cause shared values to get out of synch if you insist

on reading and writing shared variables from different threads (like rolling your

own locks or mutexes). You can rectify these problems with:

implicit barriers (as mentioned previously)

barrier (incurs synchronization penalty)

flush (no synch)

If you think you are wandering into this territory, the best reference for examples

and warnings is:

OpenMP Application Program Interface

http://openmp.org/mp-documents/OpenMP_Examples_4.0.1.pdf

Complexity vs. Efficiency

How much you will gain in efficiency by using these more flexible (dangerous)

routines depends upon your algorithm. How asynchronous can it be?

OpenMP Library API

OMP_SET_NUM_THREADS

OMP_SET_LOCK

flush

.

.

.

OpenMP Directives

omp parallel for

omp parallel do

Password cracking

(Using work farming)

Matrix Multiply

Prime Number

Finding ?

The general question is, how much time are threads spending at barriers?

If you can’t tell, profiling will.

Complex Simple

Scheduling

 #pragma omp parallel for private (j) \

 reduction(+:not_primes)

 for (i = 2; i <= n; i++){

 for (j = 2; j < i; j++){

 if (i % j == 0){

 not_primes++;

 break;

 }

 }

 }

!$omp parallel do reduction(+:not_primes)

 do i = 2,n

 do j = 2,i-1

 if (mod(i,j) == 0) then

 not_primes = not_primes + 1

 exit

 end if

 end do

 end do

!$omp end parallel do

 C Version

Fortran Version

We do have a way of greatly affecting the thread scheduling while still using do/for loops. That is

to use the schedule clause.

Let’s think about what happens with our prime number program if the loop iterations are just

evenly distributed across our processors. Some of our iterations/threads will finish much earlier

than others.

Scheduling Options

static, n Divides iterations evenly amongst threads. You can optionally specify the

chunk size to use.

dynamic, n As a thread finishes, it is assigned another. Default chunk size is 1.

guided, n Block size will decrease with each new assignment to account for

remaining iterations at that time. Chunk size specifies minimum (and

defaults to 1).

runtime Decided at runtime by OMP_SCHEDULE variable.

auto Let the compiler/runtime decide.

Exercise 2: Improving Prime Number
(About 30 minutes)

This one is a competitive exercise! We are going to see who can do best in two categories of

improving our prime number code.

1) Speed up the prime number count just using the scheduling options you have available. No

touching the serial code.

2) Speed up the prime number count by making the serial code smarter. Although our brute force

method lends itself to some obvious improvements, you could also spend the next year working on

this. You have 30 minutes for both.

We will use a reduce operation to find our winners. Let your TA know

your best time, and they will chat it back to us. I will pick the lowest time

from that. Basically a reduction(min:time)!

One Scheduling Solution

 #pragma omp parallel for private (j) \

 reduction(+:not_primes) \
 schedule(dynamic)

 for (i = 2; i <= n; i++){

 for (j = 2; j < i; j++){

 if (i % j == 0){

 not_primes++;

 break;

 }

 }

 }

!$omp parallel do reduction(+:not_primes) schedule(dynamic)

 do i = 2,n

 do j = 2,i-1

 if (mod(i,j) == 0) then

 not_primes = not_primes + 1

 exit

 end if

 end do

 end do

!$omp end parallel do

C Version Fortran Version

Dynamic scheduling with a default chunksize (of 1).

Results

We get a pretty big win for little work and even less danger. The Fortran and C times

are almost exactly the same for this code.

Threads Default (s) dynamic Speedup

1 32 32

2 23 16 1.4

4 14 8.1 1.7

8 7.7 4.2 1.8

16 4.2 2.1 2

28 2.4 1.2 2

500,000 iterations.

Information Overload?

We have now covered everything up to (but not completely including) OpenMP 4.0. I hope you still

recall how much we accomplished with just a parallel for/do. Lets recap:

Look at your large, time-consuming for/do loops first

Deal with dependencies and reductions

Using private and reductions

Consider scheduling

If you find a lot of barrier time (via inspection or profiler) then:

Sections

Tasks

Run-time library

Locks

Barriers/nowaits

