
UNIVERSITY OF ARIZONA COOPERATIVE EXTENSION WATER CONFERENCE August 12, 2016

MSIDD Planning for Shortage and Continued Drought

Brian M. Betcher General Manager Maricopa-Stanfield Irrigation & Drainage District

District Project

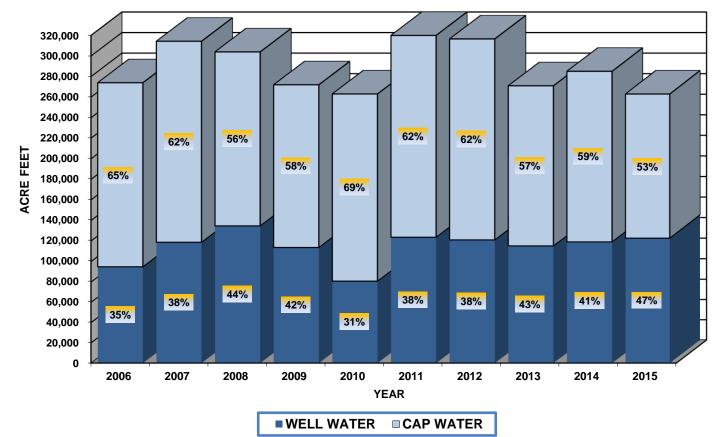
480 Square Miles - West of Casa Grande

Between Gila River and Tohono O'Odham Nations

87,000 Gross Acres (80,000 Farmable in 1989) Canal System Completed in 1989 District Acquired Over 400 Operable Irrigation Wells in 1989 (1,000 cfs) 40-year Lease Agreements with Landowners

• Canal System :

- Santa Rosa Canal: 56 Miles
 - Serves Ak-Chin Community & CAIDD
- East Main Canal: 17 Miles
- Lateral Canals: 130 Miles
- 193 Delivery Turnouts (95% Gravity)
- Entire Service Area Has Equal Access to CAP Water
- SCADA/ No Regulatory Storage


• Groundwater System:

- Current Capacity: Over 440 cfs (150 Wells)
 - Capacity Lost to Development: 150 cfs (70 Wells)
- Current Production Capability: 170,000 AFA*
 - 72% of Wells Connected to Canal System
- Uneven Access Some Areas "GW Poor/Dry"
- Capital Improvement Program for 2016
 - Increase Capability to 190,000-200,000 AFA*
 - 75% of Wells Connected to Canal System

* Depends on Annual Demand and Well Location

TOTAL ACRE FEET DELIVERED

The Shortage Challenge

		Supplies During	
Recent Supplies		Level 1 Shortage	
P:	130,000		50,000
V:	<u>170,000</u>	>>>??	<u>200,000</u>
	300,000		250,000

CA

GV

Can MSIDD Increase Groundwater Production to 200,000 AFA?

Shortage Strategies

Forbearance: Protect Lake Mead Water Levels Delayed Onset of Level 1 Shortage Until 2018 or Later

Drought Contingency Plan Among AZ, CA & NV An Insurance Policy?

Increase Groundwater Pumping How Much More and For How Long Concern Over Preserving Resource

Growers May be Forced to Increase Fallowing

Growers Continue Shift to Efficient Low-Head Irrigation Systems Make GW Supplies More Effective

Growers Change to Alternative Crops Must Prove Profitability – Long Term Requires Investment in Infrastructure

Factors Affecting Future GW Pumping

- Does Demand Remain Constant *i.e.* GW Replaces All Lost CAP

 Or Reduce Acres to Match GW Capability
- Infrastructure: Can CAP be replaced by GW where needed
 - New Pipelines to Connect More Wells to System
 - More Point Sources Reduce "GW Poor/Dry" Areas
 - Rehab Old
 - Drill New (Partnering for Recovery May Help)
 - Redundancy to Match Farm System Capacities (Even More Wells!)
 - Main Canal Pump Back System
- Cost of Increased GW Water Pumping
 - Increased Cost of Maintaining More Wells
 - Energy Costs for Groundwater Pumping
 - » Drought Reduces Hydropower Availability
 - » Increased Use of Supplemental Power Spot Market
 - Increased Depths to Groundwater
 - » More Energy per Unit Produced
 - » Potential Quality Degradation
 - » Risk Return of Subsidence

Preparing for Reduced CAP Supplies Investments in GW Infrastructure

- 2009 2012: \$1.5 Million Revenue Bond Planning for 2017 Ag Pool Reductions Target \rightarrow 170,000 AFA
- 2013: 3-Year Plan- \$1.2 Million in Reserves
- 2014: Consultant Study Develop Construction Improvement Program (CIP)
- 2015 2016: CIP Implementation Planning for Shortage / Drought Target \rightarrow 190,000 200,000 AFA

Water Policy Ramifications

- **District Level** (Board Decisions)
 - How Much to Actually Pump
 - Cost vs. Resource Management vs. Subsidence
 - Limits on Flow Rate and / or Daily Use
 - Strict / Reduced Annual Allotments
- State Level (ADWR and CAP)
 - Will Extra Pumping Lead to More Regulation?
 - Pricing Strategies for Remaining Colorado River Water
- Basin Level (Federal)
 - Does AZ Continue to Bear "Cost" of Lowest Priority?
 - Structural Deficit Distribution DCP
 - Colorado River Management
 - Upper Basin vs. Lower Basin Transfers
 - Shift Ag Conservation Burden to Other States