Low Cost Surface Irrigation Improvements

Improvements through Management

Peter A. Livingston PE, Professor and Department Head, California Polytechnical University, San Luise Obispo Stephen E Poe, Professor, Department of Agricultural and Biosystems Engineering, University of Arizona

Introduction to Surface Irrigation

- Sloped
- Modified Slope Level End
- Dead Level

Irrigation in Arizona

Cortaro Marana Irrigation District - Pima County

- Maricopa Stanfield Irrigation District
- Central Arizona Irrigation District

Concerns About Future Impacts to CAP Water Supplies for the Districts

Yuma and Welton Mohawk Irrigation Districts

No New Irrigated Land in Arizona

No funding or water for farmers to develop new land

Except Native Americans

Need to make existing farmland more water efficient

Land leveling

- Sprinkler and Drip irrigation
- Management strategies

Goal of Irrigation

Apply the right amount of water as uniformly as possible to meet the crop water needs: fill the root zone; minimize runoff and deep percolation

Some Considerations

- Crop Water Use
- Soil class water holding capacity, infiltration rate (sand, loam, clay)
- Depth of soil also relates to drainage of soil
- Soil salinity
 - Identifies limiting factors for infiltration
 - Result in increased water requirement for leaching

What Can I do as an Extension Agent

- Help Farmer review what he has:
 - Head of water (gpm)
 - Reliability of water
 - > yes, everyday, OK for Drip and Sprinkler
 - No, must do surface
 - Field layout
 - Even rectangle fields
 - Uneven fields with multiple soils
 - Tools
 - NRCS Soil Survey
 - Goggle Earth size, shape, location (wash, water source)

NRCS Web Soil Survey

Soil Survey | NRCS - NRCS Soils

soils.usda.gov/survey Vinited States Department of Agriculture Lists **soil surveys**, survey programs, **soil survey** technology, standards, data and references.

Soil Surveys by State - Soil Classification - Soil Geography - Soil Taxonomy

- NRCS Soils Reports
- By state then region

Google Earth

Pull up area and measure row lengths and use elevation data to calculate slope NOTE - this is not very accurate, but is a good starting point

Google Earth

- Great Tool
- Latitude/Longitude
- Elevations
- Distances
- Site conditions
- Historic overview

NRCS Soil Survey

4 steps

- 1. Area of interest (map driven by region)
- 2. Soil Map Click on the soil map tab to view a soil map
- 3. Click the Soil Data Explorer tab to access soil data
- 4. Use Shopping Cart tab to customize and print any reports
- Plenty of training videos just search for NRCS soil survey in YouTube

Surface Irrigation - Dead Level

- 0.2% slope along furrow to keep water moving
- 0.0% side slope
- Very efficient because no runoff
- Short fields, typically 660 ft to 880 ft long
- High flow rate per furrow to get water out to end of field quickly
- Loose productivity for multiple seasons
- Expensive \$3,000 to \$8,000/ac

Surface Irrigation Design

Irrigation efficiency

 $\blacktriangleright Eff = 100 * \frac{F_n}{F_g} = \frac{Crop \ requirement}{Total \ amount \ applied}$

Total Amount Applied = crop requirement (fill root zone to desired depth) + Deep Percolated Water + Runoff

▶ Deep Percolated =
$$(F_{o-l} - F_n)$$

$$F_{o-l} = \left[T_1 - \frac{0.0929}{f * \left(\frac{0.305 * \beta}{X}\right)} \right] * \left[(\beta - 1)e^{\beta} + 1 \right]$$

Dang Engineer's and their equations, Just tell me what it means

The faster you can move water down a furrow the more efficient the irrigation will be.

But

- Soil erosion
- Runoff
- Furrow roughness

Surface Irrigation

- Most common system in Arizona
- Furrow or notched ditches for individual rows
- Some gated pipe for individual rows
- Boarder irrigation for alfalfa and wheat

Modified Slope

- Natural slope for 66% of field, then level
- Lower land leveling cost
- Do not loose top soil during land leveling process
- Lower flow rate per furrow
- Still high irrigation efficiency

Want to do Leveling

- Contact NRCS
 - ► EQIP \$
 - Survey field
 - Do irrigation design
 - Many no cost services, time to accomplish task depends on how busy they are
- Contact a design firm for faster service
 - Cairo Engineering, Stantec Engineering (Phoenix Office)

Factors That Influence Irrigation

- Advance time how fast the water runs down the furrow
- Soil texture and roughness
- Furrow slope
 - Consistency, dead level, modified sloped with level end
- Length of furrow
- Tillage

Furrow Roughness

- First irrigation is typically your pre-irrigation. High roughness will cause uneven flow of water down the furrow.
 - Decrease roughness by pulling a "bullet" down furrow
- Even with clean furrow water movement is not exactly even.

Tillage Affects on Infiltration

Effect of Length of Run

Management Techniques

- Surge Irrigation
 - What is surge
 - Wet soil with double the head of water
 - Left/right/left/right...
 - Cycle until wetted front is 66% of way down field
 - Minimize advance time because water moves faster over wetted soil
 - Minimize deep percolation and runoff
 - Cut back to match infiltration rate

Surge Irrigation

Surge Irrigation

Potential Advantages of Surge Irrigation

- Advances water more quickly
- Less deep percolation
- Better runoff management
- Better uniformity
- Increased irrigation efficiency

Irrigation Efficiency through Time Management

- WATCH YOUR IRRIGATION SET TIMES
 - Work with NRCS, Extension, or ABE Department to calculate the optimal time of irrigation
 - Have irrigator accurately keep track of time
 - Don't move water when convenient
 - 60 minutes per irrigation at a rate of 5 cfs over 7 irrigations wastes about 3 ac-ft of water per irrigation set.

Summary

- Goal is to minimize runoff and deep percolation
- Field Length
 - Shorter the field the higher the irrigation efficiency
 - Loose cropped land due to roads and turn rows
- Correct Stream Size
 - Match flow in furrow to
 - irrigation system
 - Soils lighter soil higher q (gpm per furrow)
 - Set Time
 - Don't waste water because you are "busy"

Saving Water In Agriculture

Irrigation training video in English and Spanish

Sponsored by ADWR, USBR, and USDA-NRCS

Available on line at: https://youtu.be/aFO4h8i-h6g (English)

https://youtu.be/3F97YRy4q4U (Spanish)

Thank you to Bill Kranz, University of Nebraska Extension Irrigation Specialist, for exhibits used in this presentation

Irrigation Management Video

https://youtu.be/c3DeW2Hq8WM

Flood Irrigatio Management

Thank You!

Questions?

