

Tim Thomure, PE, ENV SP | Director of Tucson Water | timothy.thomure@tucsonaz.gov

University of Arizona Cooperative Extension

Potable Reuse... The Time Has Come

The "D's" of Discussing Potable Reuse

Deny (or)

Delay

Depend

30 Years Ago:

15 Years Ago:

5 Years Ago:

rs Ago: Di Today: Di

Disguise Direct Dollars

Delivered

Framework for DPR

- Published by WateReuse (2015)
- Sponsors: WateReuse, AWWA, and WEF
- Developed by an NWRI Expert Panel
- Available at <u>www.watereuse.org</u>

Texas Experiences

- Operational DPR project(s)
- Direct Potable Reuse
 Resource Document
- General Approach:
 Individual Permits

EOA, Inc. • Lloyd Gosselink Attorneys at Law • Nellor Environmental Associates, Inc. • Separation Processes, Inc. • Soller Environmental, LLC • Trussell Technologies, Inc. • Dr. Jörg Drewes, Technical University of Munich • Dr. Steven Duranceau, University of Central Florida • Dr. Desmond Lawler, University of Texas at Austin • Dr. Shane Snyder, University of Arizona • Dr. George Tchobanoglous, University of California at Davis

California State Water Resources Control Board

California Regulations

- Groundwater replenishment (final)
- Surface water augmentation (draft)
- Expert Panel Report on Feasibility of Developing DPR Criteria for California (draft)
- Prescribed approach (RO)

Potable Reuse... Is Arizona There Yet?

"Stuck in the Middle with You"

Potable Reuse in Arizona – A Continuing Conversation

SCAPR Phase I Key Outcomes

- 1. Potable Reuse is "on the table" in Arizona
- 2. IPR projects are in place and more on the way
- 3. A flexible regulatory framework is needed
- 4. Prime concerns:
 - Unregulated contaminants
 - Process monitoring/reliability
 - Brine management / avoidance
 - Defining "safe"

Research

Purpose of Report:

Provide recommendations regarding the development of regulations on DPR in Arizona

Based on input from stakeholders, develop a document that provides specific recommendations on the range of topics needed for implementing **DPR** in Arizona

Scope of Work:

Goals

- Develop science-based recommendations
- Protect public health
- Provide a path for permitting DPR projects in Arizona

Why now? ADEQ Reclaimed Water Rulemaking

Revisions Needed

 Process to revise Arizona rules on reuse of reclaimed water and gray water

New Info Available

- ADEQ last updated its reuse rules in 2001
- Expansion in reuse of treated wastewater
- Research and technology have moved forward
- New uses of reclaimed water have been proposed

Framework Activities

Technical, Operational, and Management Barriers

NWRI Report under Development

Chap. 1: Introduction

Overview

- Water reuse in AZ
- Nonpotable reuse
- Planned potable reuse
- Potable reuse
 - IPR
 - DPR

Terminology

Studies

- NRC Report 1998
- NRC Report 2012
- Risks from microbial and chemical constituents

Organization

- Chapter summaries
- Recommended resources

Chap. 2: Public Health Considerations

Overview

- Public health considerations
- Drinking water regulations

Pathogens

Pathogen reduction criteria:

- TCEQ approach
- NWRI Expert Panel/WRRF 11-02 approach
- Calif. IPR approach

Chemicals

Targets:

- MCLs
- Trace organics
- TOC
- 1,4-dioxane and NDMA
- DBPs

Chapter 3: Potable Reuse Recommendations

COMME

Topics

- 1. Rescind DPR prohibition
- 2. Applications
- 3. Outreach
- 4. Source control
- 5. Water quality classes
- 6. Microbial control
- 7. Log removal targets
- 8. Chemical control
- 9. Wastewater treatment

- 11. Employ BADCT
- 12. Treatment performance
- 13. Long-term monitoring
- 14. Critical Control Points
- 15. Facility operations

16. TMF Capacity

17. Other considerations

4. Source control

- What? Control of the discharge of constituents (chemicals) into a wastewater collection system that:
 - 1. Can impact wastewater treatment.
 - 2. Are difficult to treat.
 - 3. May impair the water quality entering an advanced treatment facility.
- Why? Beneficial, efficient, and cost effective strategy for managing chemicals by keeping them out of the wastewater system.
- Specific recommendations:
 - Understand the sewershed and sources of chemicals.
 - Minimize discharge of harmful or difficult to treat chemicals.
 - Improve wastewater water quality. Provide public with confidence.

7. Log Removal Targets

- Comply with the following <u>minimum log removals</u> (including SWTR credits for the PSW) starting from the raw wastewater (California):
 - 12-log reduction of enteric virus,
 - 10-log reduction of *Giardia* cysts, and
 - 10-log reduction of *Cryptosporidium* oocysts
- Log removals <u>can be adjusted</u> based on an approved pathogen removal study of the wastewater treatment plant that assigns conservative log reduction credits (Texas)
- Apply credits to wastewater facility, advanced water treatment facility, and drinking water facility based on regulatory review.

8. Chemical Control

- What? Chemicals in wastewater must be removed to appropriate levels.
- Why? Chemicals in recycled water include both regulated and unregulated chemicals. Chemicals are typically chronic (nitrate is a notable exception). Trace organics (e.g., CECs) are often discussed.
- Specific recommendations:
 - Meet all MCLs and any additional state requirements (regulated chemicals)
 - Meet relevant health criteria established for unregulated chemicals.
 - Monitor for surrogates and indicators of treatment (performance monitoring) and water quality (verification monitoring).
 - Possibly use TOC as a measure for unknown chemicals.

Permit

Guidance

10. Advanced Water Treatment (AWT)

- What? Involves unit processes (a range exists) for treating wastewater effluent to produce a drinking water source of supply.
- Why? Must meet regulatory review (pathogens and chemicals) and public scrutiny.
- Specific recommendations:
 - Define the <u>objectives</u> (pathogen log removals and chemical control).
 - <u>Do not list specific treatment trains</u> (avoid the notion of prescribed trains).
 - Instead, provide lists of advanced treatments and the capabilities.
 - Use of pilot testing and/or demonstration studies.
 - Track research and field experience. Understand reliability (performance of treatment).
 - Role of "environmental storage buffer"

14. Critical Control Points

- What? Point in the treatment train (i.e., a unit treatment process) that is designed to reduce, prevent, or eliminate a human health risk and for which controls exist to ensure the proper performance of that process.
- Why? Systematic approach to inform the <u>effective operation</u> of AWTF through performancebased monitoring (augment end-of-pipe monitoring)
- Specific recommendations:
 - Identify hazards
 - Identify CCPs
 - Identify monitoring procedures
 - Identify corrective actions and procedures

RegulationPermit

Guidance

16. TMF Capacity

- What? Technical, Managerial, and Financial Capacity ability of a water utility to provide safe and dependable water (required by SDWA)
- Why? Regulators can assess a utilities potential or existing weaknesses to provide safe and reliable advanced treated water.
- Specific recommendations:
 - Build on existing capacity develop program for PWSs
 - Expand current TMP program to address DPR
 - Ability to review small systems

Conclusions

Focus on Solutions

- The need within 25-100 years is
 0.9 to 3.2 MAF
- "As demands increase and water supplies become more stretched, the need to explore and invest in direct potable reuse for drinking water supplies will become necessary."

http://www.azwater.gov/AzDWR/Arizonas_Strategic_Vision/

Recycled Water in Arizona: Right Water for the Right Use

